Categories
Developers Tutoriales de Salesforce

Habilitación de MFA en MuleSoft para canalizaciones de CI/CD mediante acciones de GitHub ☁️

Esta es una traducción que desde EGA Futura ofrecemos como cortesía a toda la Ohana y comunidad de programadores , consultores , administradores y arquitectos de Salesforce para toda Iberoamérica .

El enlace a la publicación original, lo encontrarás al final de este artículo.

Habilitación de MFA en MuleSoft para canalizaciones de CI/CD mediante acciones de GitHub | Blog de desarrolladores de Salesforce

La mayoría de las cuentas empresariales de Anypoint Platform requieren que utilice mecanismos de autenticación multifactor (MFA) para mayor seguridad. Esto significa que, además de su nombre de usuario y contraseña habituales, necesitará un paso adicional para autenticarse (por ejemplo, una aplicación de autenticación en su teléfono).

Cuando utiliza canalizaciones de CI/CD para sus aplicaciones Mule y MFA está habilitado en su cuenta, la configuración para autenticarse usando el complemento Mule Maven será diferente que si solo estuviera usando su nombre de usuario y contraseña. Hay más pasos que debe seguir desde su cuenta de Anypoint Platform para habilitar sus canales de CI/CD con este método de autenticación.

En esta publicación, aprenderá cómo configurar una canalización de GitHub Actions para que funcione con su cuenta habilitada para MFA desde Anypoint Platform.

Requisitos previos

Crear una aplicación conectada

Dado que usar el nombre de usuario y la contraseña de su plataforma Anypoint no es suficiente para autenticarse en el proceso, debe crear una aplicación conectada para usar sus credenciales (ID/Secreto). Para crearlo, vaya a su cuenta de Anypoint Platform y navegue hasta Gestión de acceso > Aplicaciones conectadas > Crear aplicación .

Asigne un nombre a su aplicación para identificarla de otras que pueda crear. Por ejemplo, github-actions . Seleccione el tipo La aplicación actúa por sí sola y haga clic en el botón Agregar ámbitos .

Seleccione los siguientes 10 ámbitos.

  • Desarrollador del centro de diseño
  • Ver entorno
  • Ver organización
  • Perfil
  • Administrador de organización de CloudHub
  • Crear aplicaciones
  • Eliminar aplicaciones
  • Descargar aplicaciones
  • Leer aplicaciones
  • Leer servidores

Haga clic en Siguiente . Seleccione su grupo empresarial y haga clic en Siguiente . Seleccione su entorno (por ejemplo, Sandbox) y haga clic en Siguiente . Revise que los alcances sean correctos y haga clic en Agregar alcances . Haga clic en Guardar .

Una vez creada la aplicación, asegúrese de copiar tanto el ID como el Secreto . Los utilizará en la configuración de la canalización como método de autenticación.

Configura tus secretos de GitHub Actions

Vaya a su repositorio de GitHub. Haga clic en la pestaña Configuración > Secretos y variables > Acciones > Nuevo secreto del repositorio . En el campo de nombre, agregue CONNECTED_APP_CLIENT_ID . En el campo secreto, agregue la identificación real que acaba de copiar en el paso anterior. Repita este paso para crear otro secreto con el secreto real que copió en el paso anterior. Utilice el nombre CONNECTED_APP_CLIENT_SECRET .

Crear una canalización de CI/CD

De vuelta en el código de su aplicación Mule, cree una carpeta .github en el nivel raíz. Dentro de esta carpeta, cree otra carpeta llamada workflows . Dentro de esta carpeta, cree un archivo build.yml con el siguiente contenido: mule-mfa-cicd-build.yml . Tenga en cuenta que la sucursal main se utiliza en la línea 5. Si su sucursal tiene un nombre diferente, asegúrese de actualizar esta configuración.

En este archivo, describimos los pasos para generar el archivo JAR de nuestra aplicación Mule e implementarlo en nuestra cuenta de Anypoint Platform usando GitHub Actions. Observe que estamos usando los secretos creados previamente en el último paso para pasarlos a nuestro proyecto a través de Maven. Aquí declaramos dos variables de entorno Java ( client.id y client.secret ) para copiar las credenciales de nuestra aplicación de los secretos de GitHub para que el archivo pom.xml pueda usarse más adelante.

Modifica tu configuración de Maven

En su proyecto Mule, abra su archivo pom.xml. Localice el complemento org.mule.tools.maven en project/build/plugins . Agregue la siguiente configuración a este complemento.

<dx-code-block title language="xml" code-block=" org.mule.tools.maven mule-maven-plugin ${mule.maven.plugin.version} true https://anypoint.mulesoft.com 4.4.0 mulesoft-mfa-cicd Sandbox MICRO us-east-2 1 true ${client.id} ${client.secret} client_credentials
«>

Vuelva a verificar estas configuraciones en caso de que necesite actualizarlas para que coincidan con su caso de uso. Por ejemplo, muleVersion , applicationName , environment o region . Usaremos los campos connectedAppClientId y connectedAppClientSecret para pasar las variables Java que declaramos anteriormente en la configuración de Maven.

Es importante que no codifique las credenciales de la aplicación conectada en este archivo por razones de seguridad. Es por eso que mantenemos los valores como secretos de GitHub. Recuerda que puedes acceder a nuestro repositorio de ejemplo si necesitas comparar tu código con el nuestro.

ejecutar la tubería

Una vez que todas sus configuraciones estén listas, confirme y envíe sus cambios al repositorio remoto. Esto activará la canalización en GitHub. Puede ver el proceso haciendo clic en la pestaña Acciones de su repositorio de GitHub.

Una vez completado el proceso, su aplicación Mule se implementará en Runtime Manager. Tenga en cuenta que el archivo JAR contendrá el hash de confirmación en su nombre.

Conclusión

Habilitar canalizaciones de CI/CD es importante para automatizar tareas repetitivas. En lugar de implementar manualmente una aplicación Mule cada vez que hay un cambio en el código, podemos crear canalizaciones para que realicen estas tareas por nosotros. Este fue un ejemplo simple que utiliza solo una sucursal y un entorno, pero puede conectar otras sucursales a otros entornos en Anypoint Platform. Por ejemplo, dev , qa , prod , etc.

En esta publicación, aprendimos cómo implementar automáticamente una aplicación Mule en CloudHub cuando usamos la autenticación multifactor en nuestra cuenta de Anypoint Platform porque la mayoría de las cuentas empresariales tienen esta configuración habilitada. Sin embargo, cuando solo usa una cuenta de prueba gratuita, no necesita crear una aplicación conectada si no usa MFA en su cuenta. Puede utilizar su nombre de usuario y contraseña de Anypoint Platform para iniciar sesión.

Hay muchas cosas que puede automatizar al utilizar canalizaciones de CI/CD para sus aplicaciones Mule. Puedes ejecutar pruebas automatizadas antes de implementar tu aplicación Mule, por ejemplo. ¿Se te ocurren otras tareas repetitivas que puedas automatizar en tus canalizaciones?

Nota: Las versiones iniciales de la canalización se basan en el siguiente repositorio creado por Archana Patel: arch-jn/github-actions-mule-cicd-demo .

Recursos adicionales

Sobre el Autor

Alex Martínez formó parte de la comunidad de MuleSoft antes de unirse a MuleSoft como desarrollador defensor. Fundó ProstDev para ayudar a otros profesionales a aprender más sobre la creación de contenido. En su tiempo libre, encontrarás a Alex jugando juegos de Nintendo o Playstation y escribiendo reseñas sobre ellos. Siga a Alex en LinkedIn o en la comunidad Trailblazer .

Obtenga las últimas publicaciones de blog y episodios de podcasts para desarrolladores de Salesforce a través de Slack o RSS.

Añadir a holgura Suscríbete a RSS

Categories
Developers Tutoriales de Salesforce

Creación de aplicaciones impulsadas por IA con LLM y Einstein ☁️

Esta es una traducción que desde EGA Futura ofrecemos como cortesía a toda la Ohana y comunidad de programadores , consultores , administradores y arquitectos de Salesforce para toda Iberoamérica .

El enlace a la publicación original, lo encontrarás al final de este artículo.

Creación de aplicaciones impulsadas por IA con LLM y Einstein | Blog de desarrolladores de Salesforce

La IA generativa es la tecnología más transformadora desde Internet y revoluciona la forma en que creamos e interactuamos con la información. Para los desarrolladores, esto plantea nuevas preguntas: desde la práctica "¿Cómo puedo crear aplicaciones impulsadas por IA con modelos de lenguaje grandes (LLM)?" Más profundamente, “¿Cómo cambiará la IA generativa la naturaleza de las aplicaciones? ” Exploramos estas dos preguntas en esta publicación de blog.

¿Cómo creo aplicaciones impulsadas por IA con LLM?

Comencemos con la primera pregunta: "¿Cómo creo aplicaciones con LLM?" y explore tres opciones que comúnmente se consideran:

  1. Entrena tu propio modelo
  2. Personaliza un modelo de código abierto
  3. Utilice modelos existentes a través de API

Entrena tu propio modelo

Entrenar su propio modelo le brinda control total sobre los datos de los que aprende su modelo. Por ejemplo, puede entrenar un modelo con datos específicos de su industria. Un modelo entrenado con datos de un dominio específico generalmente será más preciso que un modelo de propósito general para casos de uso centrados en ese dominio. Si bien entrenar su propio modelo ofrece más control y precisión, puede que no siempre sea el mejor enfoque. Aquí hay algunas cosas para considerar:

  1. Tiempo y recursos: formar su propio LLM desde cero puede llevar semanas o incluso meses. Como punto de referencia, aunque es probable que su modelo sea mucho más pequeño, el modelo GPT-3 de OpenAI tardó 1,5 millones de horas de GPU en entrenarse.
  2. Experiencia: para entrenar su modelo, también necesitará un equipo de ingenieros especializados en aprendizaje automático (ML) y procesamiento del lenguaje natural (NLP).
  3. Seguridad de los datos: el poder de los LLM hace que sea tentador crear modelos que aprendan de todos sus datos, pero esto no siempre es lo correcto desde el punto de vista de la seguridad de los datos. Puede haber tensión entre la forma en que aprenden los LLM y la forma en que se implementan las políticas de seguridad de datos en su empresa. Los LLM aprenden de grandes cantidades de datos. ¡Cuantos más datos mejor! Sin embargo, con seguridad a nivel de campo (FLS) y permisos estrictos, las políticas de seguridad de datos corporativas a menudo se basan en el principio de privilegio mínimo: los usuarios solo deben tener acceso a los datos que necesitan para realizar su trabajo específico. ¡Cuantos menos datos mejor! Por lo tanto, un modelo formado con todos los datos disponibles de los clientes y puesto a disposición de todos en su empresa puede no ser una buena idea y violar las políticas de seguridad de datos de su empresa. Sin embargo, un modelo entrenado en especificaciones de productos y resoluciones de tickets de soporte anteriores puede ayudar a los agentes a resolver tickets nuevos sin comprometer la seguridad de los datos.

Personaliza un modelo de código abierto

Personalizar un modelo de código abierto normalmente lleva menos tiempo y es menos costoso que entrenar su propio modelo desde cero. Sin embargo, aún necesita un equipo de ingenieros especializados en aprendizaje automático (ML) y procesamiento del lenguaje natural (NLP). Dependiendo del caso de uso, es posible que aún experimentes la tensión de seguridad de los datos descrita anteriormente.

Utilice modelos existentes a través de API

Utilizar modelos existentes a través de API es la forma más sencilla de crear aplicaciones con LLM. Esta es también la opción más utilizada en este momento. Sin embargo, estos modelos no se han entrenado con los datos contextuales o privados de su empresa y, por lo tanto, el resultado que producen puede ser demasiado genérico para ser útil.

En esta publicación de blog, exploramos diferentes técnicas para agregar datos contextuales o privados de la empresa a través del mensaje. Debido a que el mensaje se crea dinámicamente en nombre del usuario, solo incluye datos a los que el usuario tiene acceso, lo que aborda la tensión de seguridad de los datos descrita anteriormente. Es posible que le preocupe pasar datos privados a una API de terceros, pero existen técnicas para abordar esa preocupación y también las describimos en esta publicación de blog.

Creación de aplicaciones impulsadas por IA utilizando modelos existentes a través de API

Llamada API básica

Los principales proveedores de modelos como OpenAPI , Anthropic , Google , Hugging Face y Cohere ofrecen API para trabajar con sus modelos. En la implementación más básica, su aplicación captura un mensaje del usuario, lo pasa como parte de la llamada API y muestra el resultado generado al usuario.

Por ejemplo, así es como se vería la llamada API usando la API OpenAI:

Esta opción puede funcionar para casos de uso simples que solo requieren un resultado general basado en conocimientos generales. Por ejemplo, " Escribe un haiku sobre el invierno" o "Escribe una declaración SQL de muestra con una unión externa". Pero si necesita una respuesta que se adapte a su propio contexto o a los datos privados de su empresa, es probable que el resultado generado sea demasiado genérico para ser útil.

Por ejemplo, digamos que un usuario ingresa el siguiente mensaje:

Escriba un correo electrónico de presentación para el director ejecutivo de Acme.

El correo electrónico generado no sería personalizado ni relevante porque el modelo no sabe nada sobre su relación con Acme y los negocios que ha hecho con ellos.

Puesta a tierra del LLM

Para que la respuesta sea más relevante y contextual, el usuario puede fundamentar el LLM con información adicional. Por ejemplo, pueden ingresar el siguiente mensaje:

Usted es John Smith, representante de cuentas de Northern Trail Outfitters.
Escriba un correo electrónico de presentación a Lisa Martinez, directora ejecutiva de ACME.
Aquí hay una lista de los últimos tres pedidos que Acme realizó a Northern Trail Outfitters:
Colección Verano 2023: $375,286
Colección Primavera 2023: $402,255
Colección Invierno 2022: $357,542

Esto permite que el LLM genere un resultado mucho más relevante. Sin embargo, este enfoque plantea dos problemas:

  1. El usuario debe ingresar mucha información de conexión a tierra manualmente. Por lo tanto, la calidad del resultado depende en gran medida de la calidad de la pregunta ingresada por el usuario.
  2. Está pasando información confidencial al proveedor del modelo donde potencialmente podría persistir o usarse para entrenar aún más el modelo, lo que significa que sus datos privados podrían aparecer en la respuesta generada por el modelo de otra persona.

Construcción rápida y puesta a tierra dinámica.

Para abordar la primera limitación anterior, puede construir el mensaje mediante programación. El usuario ingresa una cantidad mínima de información o simplemente hace clic en un botón en la aplicación y luego usted crea el mensaje mediante programación agregando datos relevantes. Por ejemplo, en respuesta a un clic en el botón “Escribir correo electrónico de introducción”, podría:

  1. Llame a un servicio para obtener información sobre el usuario.
  2. Llame a un servicio para obtener información sobre el contacto.
  3. Llame a un servicio para obtener la lista de oportunidades recientes.
  4. Construya el mensaje utilizando la información obtenida de los servicios de datos anteriores.

Así es como podrían verse estos pasos de construcción rápidos en Apex:

El principal inconveniente de este enfoque es que requiere un código personalizado para cada mensaje para poder realizar la sencilla tarea de fusionar datos dinámicos en texto estático.

Plantillas de aviso

Para facilitar la construcción del mensaje, podemos usar plantillas: un patrón de desarrollo de software bien conocido que se usa comúnmente para fusionar datos dinámicos en documentos estáticos. Con una plantilla, escribe un archivo de solicitud utilizando marcadores de posición que se reemplazan dinámicamente con datos dinámicos en tiempo de ejecución.

Así es como se vería el ejemplo de Apex anterior usando un lenguaje de plantilla genérico:

Eres {{ user.Name }}, {{user.Title}} en {{ user.CompanyName }}
Escriba un correo electrónico de presentación a {{ contact.Name }}, {{contact.Title}} en {{ contact.Account.Name }}
Estas son las oportunidades de {{contact.Account.Name}}:
{{#oportunidades}}
{{Nombre}}: {{Cantidad}}

{{/oportunidades}}

Las plantillas de mensajes no solo son útiles para crear mensajes mediante programación, sino que también se pueden utilizar como base para herramientas gráficas que admiten la creación de mensajes en un entorno de arrastrar y soltar.

Estudio rápido

Por eso creamos Prompt Studio, un nuevo creador de Salesforce que facilita la creación de indicaciones. Le permite crear plantillas de mensajes en un entorno gráfico y vincular campos de marcador de posición a datos dinámicos disponibles a través de datos de páginas de registro, un flujo, una nube de datos, una llamada de Apex o una llamada API. Una vez creada, se puede utilizar una plantilla de solicitud en diferentes lugares para consultar el modelo, incluidas las páginas de registro y el código Apex.

Capa de confianza de Einstein

Prompt Builder le permite definir mensajes basados dinámicamente en un entorno gráfico. Pero, ¿cómo se envía ese mensaje de forma segura a un proveedor de LLM?

Puede enviar el mensaje directamente a la API del proveedor de LLM, pero hay una serie de preguntas a considerar con ese enfoque:

  • ¿Qué pasa con los problemas de cumplimiento y privacidad si pasa datos de información de identificación personal (PII) en el mensaje? ¿El proveedor del modelo podría conservar los datos de PII o incluso utilizarlos para entrenar aún más el modelo?
  • ¿Cómo se evitan las alucinaciones, la toxicidad y los sesgos en los resultados generados por los LLM?
  • ¿Cómo se rastrea y registra los pasos de creación de mensajes con fines de auditoría?

Si utiliza la API del proveedor de LLM directamente, tendrá que escribir un código personalizado para responder a estas preguntas. Hay muchas cosas a considerar y puede resultar difícil hacerlo bien para todos los casos de uso.

Ingrese a la capa de confianza de Einstein. Einstein Trust Layer le permite enviar solicitudes a LLM de forma confiable, abordando las inquietudes mencionadas anteriormente.

Así es como funciona:

  1. En lugar de realizar llamadas API directas, utiliza LLM Gateway para acceder al modelo. LLM Gateway admite diferentes proveedores de modelos y abstrae las diferencias entre ellos. Incluso puedes conectar tu propio modelo.
  2. Antes de enviar la solicitud al proveedor del modelo, pasa por una serie de pasos que incluyen el enmascaramiento de datos que reemplaza los datos PII con datos falsos para garantizar la privacidad y el cumplimiento de los datos.
  3. Para proteger aún más sus datos, Salesforce tiene acuerdos de retención cero con proveedores de modelos, lo que significa que los proveedores de modelos no persistirán ni entrenarán más sus modelos con datos enviados desde Salesforce.
  4. Cuando se recibe el resultado del modelo, pasa por otra serie de pasos, incluido el desenmascaramiento, la detección de toxicidad y el registro de seguimiento de auditoría. Demasking restaura los datos reales que fueron reemplazados por datos falsos por motivos de privacidad. La detección de toxicidad comprueba si hay contenido dañino u ofensivo en el resultado. El registro de seguimiento de auditoría registra todo el proceso con fines de auditoría.

De cara al futuro: creación de aplicaciones de una forma totalmente nueva

Ahora echemos un vistazo a lo que viene y abordemos la segunda pregunta planteada al principio de este artículo: ¿Cómo cambiará la IA generativa la naturaleza de las aplicaciones?

Encadenamiento rápido

La lógica involucrada en la creación de un mensaje a veces puede volverse compleja. Puede implicar múltiples llamadas a API o servicios de datos, como en el ejemplo de conexión a tierra dinámica anterior. Responder a la pregunta de un solo usuario puede incluso implicar varias llamadas al LLM. Esto se llama encadenamiento rápido. Considere el siguiente ejemplo:

Para construir el mensaje:

  1. Realizamos una primera llamada API o servicio de datos para obtener datos contextuales de la empresa
  2. Los datos que regresan de la primera llamada al servicio de datos se usan para crear un primer mensaje que usamos para consultar el LLM.
  3. La salida del LLM se utiliza como entrada para una segunda llamada de servicio de datos.
  4. Los datos que regresan de la segunda llamada al servicio de datos se utilizan para crear un segundo mensaje cuya respuesta se envía al usuario.

Las posibilidades de combinar llamadas de servicios de datos y llamadas de LLM para generar un resultado son infinitas.

Orquestación de IA

El enfoque descrito hasta ahora funciona bien, pero a medida que estos flujos de trabajo se vuelven más complejos, podemos ver la necesidad de alguna forma de orquestación. Como desarrollador, luego crearía una serie de bloques de construcción que realizan tareas granulares: recuperar datos sobre un cliente, actualizar un registro, realizar alguna lógica computacional, etc. Estos bloques de construcción se pueden orquestar o remezclar de diferentes maneras usando un herramienta de orquestación. Esto se podría hacer usando una herramienta de orquestación tradicional que le permita definir qué bloques de construcción usar, en qué orden y cuándo (con diferentes ramas "si"). Pero, ¿qué pasaría si la orquestación en sí estuviera impulsada por IA con un orquestador que pudiera razonar y elegir qué bloques de construcción usar y cómo componerlos para realizar una tarea específica? La orquestación impulsada por IA es un nuevo paradigma poderoso que tiene el potencial de revolucionar la forma en que interactuamos con los sistemas de IA y creamos aplicaciones.

El siguiente diagrama describe este nuevo paradigma de bloques de construcción orquestado por IA a un alto nivel.

En este diagrama, las acciones son los componentes básicos descritos anteriormente. Podrían ser acciones invocables de Apex, API de MuleSoft o indicaciones. Algunas acciones fundamentales están disponibles de forma predeterminada y otras serán desarrolladas por los desarrolladores. Esto también crea una oportunidad para un mercado de acciones creado por desarrolladores y socios.

El planificador es el orquestador impulsado por IA. Cuando la solicitud se pasa al tiempo de ejecución de la orquestación, el planificador elige (crea un plan para) qué acciones usar y cómo componerlas para responder mejor a la solicitud del usuario.

La orquestación de IA es un área activa de investigación en Salesforce y en la industria en su conjunto.

Resumen

El uso de modelos existentes a través de API es una forma común de crear aplicaciones impulsadas por IA con LLM. Con este enfoque, es necesario basar el modelo en datos privados o contextuales de la empresa para obtener resultados más relevantes y útiles. En lugar de pedirle al usuario que ingrese una gran cantidad de información básica manualmente, puede crear el mensaje mediante programación llamando a servicios de datos y agregando datos contextuales al mensaje. Prompt Studio es un nuevo creador de Salesforce que facilita la creación de mensajes al permitirle crear plantillas de mensajes en un entorno gráfico y vincular campos de marcador de posición a datos dinámicos. Einstein Trust Layer le permite enviar mensajes a las API de los proveedores de LLM de forma confiable, abordando problemas de privacidad, sesgos y toxicidad de los datos. La orquestación impulsada por la IA es un paradigma emergente que podría cambiar la forma en que interactuamos con los sistemas de IA y creamos aplicaciones.

Sobre el Autor

Christophe Coenraets es vicepresidente senior de Trailblazer Enablement en Salesforce. Es un desarrollador de corazón con más de 25 años de experiencia en la creación de aplicaciones empresariales, habilitando audiencias técnicas y asesorando a organizaciones de TI.

Obtenga las últimas publicaciones de blog y episodios de podcasts para desarrolladores de Salesforce a través de Slack o RSS.

Añadir a holgura Suscríbete a RSS

Categories
Developers Discover Magazine Tutoriales de Salesforce

Preparación para el examen de arquitecto de datos certificado de Salesforce

Ha estado en mi mente por un tiempo, ya que para mí esta certificación era la última que me faltaba por adquirir en la ruta de Arquitecto de Aplicaciones (da la casualidad de que también tengo el certificado "opcional" de Experience Cloud).

Tener muchas cosas sucediendo en este momento y anhelar algo de espacio mental fue el detonante que el otro día me hizo decir: “Bueno, también puedo intentarlo; Ojalá se me quite de la cabeza de una vez por todas”. Aprendería de cualquier manera, ¡eso es seguro!

Y esto pasó…

¡Uf!

Algunas personas se han acercado para preguntar sobre la preparación para el examen y la orientación, por eso escribo esto aquí para tratar de ayudar a otros.

El contexto es clave

Cualquier certificación de examen que hago está dentro de contexto, con eso me refiero a haber trabajado ya durante algún tiempo en el producto en cuestión.

"Somos lo que hacemos repetidamente. La excelencia, entonces, no es un acto sino un hábito." -Aristóteles

Así es como funciona mi cerebro; de lo contrario, lo encuentro como una actividad abstracta que depende principalmente de la memoria más que de la experiencia. Y bueno, después de todo, soy un Scrum Master, ¡el empirismo existe!

"Salesforce recomienda encarecidamente una combinación de experiencia laboral, asistencia a cursos y autoestudio para maximizar sus posibilidades de aprobar el examen". —Comienzo del sendero

Guía de examen

La oración anterior proviene de la guía del examen; solía ser un PDF, pero ahora el contenido está integrado en Trailhead.

La guía del examen es SIEMPRE tu punto de partida, me sorprende cuánta gente no usa este recurso (¡algunos ni siquiera saben que existe! ¡¿Cómo?!).

La guía del examen está diseñada para ayudarlo a evaluar SI está listo para completar con éxito el examen. Y le brinda un desglose de todas las secciones y temas que se cubrirán, y también de lo que se espera de usted. Por ejemplo en este en particular:

La credencial de Arquitecto de datos certificado de Salesforce está destinada al arquitecto que evalúa el entorno y los requisitos de la arquitectura; y diseña soluciones sólidas, escalables y de alto rendimiento en la plataforma Customer 360. El Arquitecto también tendrá experiencia trabajando con lo siguiente:

  • Modelado de datos y diseño de bases de datos
  • Gestión de datos maestros
  • Gestión de datos de Salesforce
  • Dato de governancia
  • Consideraciones sobre grandes volúmenes de datos
  • Migración de datos

El arquitecto tiene experiencia en comunicar soluciones y diseñar compensaciones a empresas y partes interesadas de TI.

Incluso tienes el esquema del examen donde puedes ampliar cada sección (aquí es donde está lo bueno):

Recursos

¿Mencioné la guía del examen?… ¡Úsala en serio! https://trailhead.salesforce.com/help?article=Salesforce-Certified-Data-Architect-Exam-Guide

Literalmente creé mi propio documento a partir de él y desglosé cada elemento, definí la lógica y las consideraciones, escribir y estructurar me ayuda a digerir y reforzar algunos conceptos. Por ejemplo, escribí este artículo disponible públicamente para Pardot hace bastantes años, solo para darle una idea.

Hablando de empirismo, en general, mi mejor recurso es… ¡una organización de edición para desarrolladores! ¡Donde pruebo todo y más! Practica, practica, practica: soy un poco de la vieja escuela en eso: toma el desglose de la guía de certificados para cada elemento, define la lógica y luego juega con ella.

Algunos de los contenidos de este en particular pueden ser un poco más complicados, como grandes volúmenes de datos, pero afortunadamente he estado en algunos proyectos relevantes incluso recientemente, lo que siempre ayuda. También el año pasado con el Sr. Agente Gill 😉

Aunque se escribió hace bastante tiempo, este artículo sigue siendo una lectura muy relevante https://developer.salesforce.com/blogs/engineering/2013/06/extracting-large-data-volume-ldv-in-force-com, y que le permitirá revisar PK Chunking y Bulk API.

Siguiendo con más contenido de la vieja escuela de "antaño", consulte la serie de Extreme Force.com, aquí está la Parte 1: https://developer.salesforce.com/blogs/engineering/2013/02/extreme- carga-de-datos-de-salesforce-parte-1-ajuste-su-modelo-de-datos

Probablemente también sugeriría ignorar sus patrones de diseño de integración, lo que le ayudará a guiar algunas decisiones de respuesta: https://developer.salesforce.com/docs/atlas.en-us.integration_patterns_and_practices.meta/integration_patterns_and_practices/integ_pat_intro_overview.htm

Hacer una combinación de escribirlo yo mismo, probar los conceptos, luego ver algunos videos sobre el mismo concepto y leer más me ayudó a mantenerme concentrado.

Consejos

Como sabe, no puedo darle ningún detalle, eso sería una violación de los términos y condiciones del programa de certificación y tiene consecuencias graves, tanto para quienes comparten como para quienes utilizan cualquier información expuesta del examen.

Lo que te puedo decir es que deberías revisar:

  • Cuándo o cuándo no usar Cuentas personales (esa es la vista de Salesforce, por encima de su opinión)
  • Cómo mejorar la calidad de los datos en toda su pila tecnológica
  • Cuándo o cuándo no utilizar Rollups
  • Qué API usar cuando
  • Cómo manejar grandes volúmenes de datos (es decir, carga, rendimiento, exportación, cosas como compartir, bloqueos, etc.)
  • Cuándo o cuándo no utilizar relaciones maestro-detalle
  • Qué tipo de integración usar y cuándo
  • Cómo capturar y gestionar metadatos
  • Cuándo y cuándo no utilizar objetos grandes y objetos externos
  • Gestión de datos maestros
  • Gobernanza: cumplimiento y funcionalidad relacionada

Seguramente me he perdido algo, pero eso es lo más importante en este momento. Consulte y trabaje con su guía de examen: https://trailhead.salesforce.com/help?article=Salesforce-Certified-Data-Architect-Exam-Guide

¿Qué estás haciendo?

Recuerde también: el objetivo no es simplemente aprobar un examen, sino demostrar que ya tiene el conocimiento y la experiencia.

Ahora es tu turno: ¿Para qué certificación estás trabajando? ¿Cuál es su enfoque?

¡Cuéntanos y etiquétanos para que podamos celebrar contigo!