Skip to content

Etiqueta: Einstein 1

La ciencia de datos vende: Por qué los científicos de datos son clave en las ventas de hoy

Descubre el papel vital de los científicos de datos en las ventas, desbloqueando información valiosa e impulsando la eficiencia. Sigue leyendo para saber cómo.

The post La ciencia de datos vende: Why Data Scientists Are Key in Sales Today appeared first on Salesforce.

La ciencia de datos vende

Seguir leyendo

Uso de Flow o Apex para incorporar datos a sus plantillas de avisos ☁️

Uso de Flow o Apex para incorporar datos a sus plantillas de avisos ☁️

En este post del blog, te daremos una visión general de las diferentes técnicas de conexión a tierra que puedes utilizar para personalizar las plantillas de avisos sin límites.

The post Ground Your Prompt Templates with Data Using Flow or Apex appeared first on Blog de desarrolladores de Salesforce.

Seguir leyendo

Breve guía de Salesforce en los EAU

Aprenda qué es Salesforce, cómo utilizar el CRM de IA número 1 y cómo puede beneficiarse. Y descubra por qué debería unirse a nosotros en World Tour Essentials Dubai.

The post Una breve guía de Salesforce en los EAU appeared first on Salesforce.

Seguir leyendo

Súbete a la ola de la IA y muestra tus creaciones con Einstein ☁️

Súbete a la ola de la IA y muestra tus creaciones con Einstein ☁️

Muestre lo que puede crear con Prompt Builder y Copilot Builder completando la búsqueda #BuiltWithEinstein

The post Coge la ola de la IA y muestra lo que has #BuiltWithEinstein appeared first on Blog de desarrolladores de Salesforce.

Seguir leyendo

Uso de Flow, Apex o la API REST para invocar plantillas de avisos ☁️

Uso de Flow, Apex o la API REST para invocar plantillas de avisos ☁️

Gracias a la API Connect REST, no sólo es posible invocar plantillas de avisos de forma programática dentro de la plataforma Salesforce, sino también desde sistemas de terceros.

El artículo Prompt Builder está disponible en inglés

The post Invoque plantillas de avisos desde Flow, Apex o la API REST appeared first on Blog de desarrolladores de Salesforce.

Las plantillas de avisos no sólo se pueden invocar mediante programación dentro de la plataforma Salesforce, sino también desde sistemas de terceros

Seguir leyendo

Cómo la plataforma Einstein 1 gestiona cargas de trabajo masivas de datos e IA a escala

En nuestra serie “Engineering Energizers” Q&A, presentamos a Leo Tran, Arquitecto jefe de ingeniería de plataformas en Salesforce. Con más de 15 años de experiencia en liderazgo de ingeniería, Leo desempeña un papel fundamental en el desarrollo de la plataforma Einstein 1. Esta plataforma integra IA generativa, gestión de datos, capacidades de CRM y sistemas de confianza para proporcionar a las empresas experiencias de cliente personalizadas e impulsadas por IA […]

The post Cómo la nueva plataforma Einstein 1 gestiona cargas de trabajo masivas de datos e IA a escala appeared first on Blog de ingeniería de Salesforce.

Seguir leyendo

Uso de Model Builder para integrar modelos de Databricks con Salesforce ☁️

Uso de Model Builder para integrar modelos de Databricks con Salesforce ☁️

Model Builder es una plataforma de IA que permite a los equipos construir, entrenar y desplegar modelos de IA utilizando plataformas externas y datos en Data Cloud.

Los modelos de IA se pueden construir, entrenar y desplegar utilizando plataformas externas y datos en Data Cloud

The post Utiliza Model Builder para integrar modelos de Databricks con Salesforce appeared first on Blog de desarrolladores de Salesforce.

Seguir leyendo

Cinco formas en que la IA puede influir en la enseñanza superior

¿Cómo será el futuro de la educación? Desde el marketing personalizado hasta la agilización de los procesos de admisión, explore cinco formas clave en las que la IA impactará en la experiencia del estudiante y en las operaciones académicas.

La IA puede impactar en la educación superior

The post Cinco formas en las que la IA puede impactar en la educación superior appeared first on Salesforce.

La IA puede impactar en la educación superior appeared first on Salesforce

Seguir leyendo

TrailblazerDX ’24 Resumen para desarrolladores: Resumen del evento ☁️

TrailblazerDX '24 Resumen para desarrolladores: Resumen del evento ☁️

Explore un resumen de TrailblazerDX 2024, con lo más destacado de Einstein 1 Studio, Data Cloud y más funciones de IA generativa.

The post Recapitulación de desarrolladores de TrailblazerDX ’24 appeared first on Blog de desarrolladores de Salesforce.

Seguir leyendo

Traiga su propio modelo lingüístico de gran tamaño a Einstein 1 Studio ☁️

Traiga su propio modelo lingüístico de gran tamaño a Einstein 1 Studio ☁️

Obtenga su propio LLM, impulsado por su modelo OpenAI o Azure OpenAI, integrado y basado en datos de Salesforce, y presentado con Prompt Builder.

The post Cree su propio modelo de lenguaje de gran tamaño en Einstein 1 Studio appeared first on Blog de desarrolladores de Salesforce.

Seguir leyendo

Todo el mundo es un Einstein en el Salesforce World Tour Sídney 2024

Desde la última innovación en IA, historias de Trailblazer y anuncios de subvenciones hasta un nuevo ganador de la Sudadera con capucha dorada, aquí tiene seis momentos destacados del Salesforce World Tour Sídney 2024.

Seguir leyendo

10 preguntas frecuentes sobre la implementación de Salesforce Einstein

¿Qué es Salesforce Einstein? Según la presentación oficial del producto de Salesforce en su sitio web, «Salesforce Einstein es la primera IA integral para CRM. Se trata de un conjunto integrado de tecnologías de IA que hace que la plataforma Customer Success Platform sea más inteligente y lleva la IA a los pioneros de todo el mundo»  Pero, ¿esta breve explicación transmite realmente la profundidad con la que la IA interactúa con […]

El post 10 preguntas frecuentes sobre la implementación de Salesforce Einstein appeared first on Salesforce Ben.

Seguir leyendo

IA y privacidad: En la cuerda floja hacia la aceptación y el éxito

El anuncio de la Plataforma Einstein 1 de Salesforce representa un hito a la hora de tranquilizar al público sobre el hecho de que la IA puede ser un beneficio en lugar de una amenaza.

<p

The post IA y privacidad: En la cuerda floja hacia la aceptación y el éxito appeared first on Salesforce.

La IA y la privacidad: en la cuerda floja hacia la aceptación y el éxito

Seguir leyendo

TrailblazerDX 2024: Guía completa para desarrolladores ☁️

TrailblazerDX 2024: Guía completa para desarrolladores ☁️

Vea lo que TrailblazerDX 2024 tiene preparado para los desarrolladores de Salesforce, tanto si se une a nosotros en San Francisco como si lo hace en Salesforce+

The post Guía para desarrolladores de TrailblazerDX 2024 appeared first on Blog de desarrolladores de Salesforce.

Seguir leyendo

Cómo liberar el poder de la IA generativa sin crear su propio LLM

Los grandes modelos lingüísticos son la base de las revolucionarias aplicaciones de IA actuales. En lugar de entrenar un LLM en un conjunto de datos masivo, ahorre tiempo utilizando un modelo existente con indicaciones inteligentes basadas en sus datos. He aquí cómo.

Seguir leyendo

¿Su IA generativa está inventando cosas? 4 formas de mantener la honestidad

La IA generativa a veces devuelve información incorrecta, conocida coloquialmente como «alucinaciones de IA» Esto es lo que puedes hacer para proteger tu negocio y a tus clientes.

Seguir leyendo

Aprendizaje automático y clasificación mediante Random Forest ☁️

Aprendizaje automático y clasificación mediante Random Forest ☁️

Una visión general del aprendizaje automático, dos tipos populares de ML, y la clasificación de bosque aleatorio, un modelo de ML popular utilizado por los científicos de datos.

La clasificación de bosque aleatorio, un modelo de ML popular utilizado por los científicos de datos

The post Aprendizaje automático y clasificación de bosque aleatorio appeared first on Blog de Desarrolladores de Salesforce.

Seguir leyendo

Plan de IA sostenible de Salesforce: Donde la responsabilidad se une a la innovación

Salesforce se guía por sus valores fundamentales de confianza, éxito del cliente, innovación, igualdad y sostenibilidad. Estos valores se reflejan en su compromiso de desarrollar e implantar de forma responsable nuevas tecnologías como la IA generativa en nombre de las partes interesadas, desde los accionistas hasta los clientes y el planeta. Los grandes modelos lingüísticos (LLM) que potencian la IA generativa requieren enormes […]

The post Descubriendo el plan de Salesforce para una IA sostenible: donde la responsabilidad se une a la innovación appeared first on Blog de ingeniería de Salesforce.

La IA generativa requiere una gran cantidad de recursos para ser sostenible

Seguir leyendo

Prompt Engineering para desarrolladores de Salesforce: Mejora de la eficacia y la productividad ☁️

Prompt Engineering para desarrolladores de Salesforce: Mejora de la eficacia y la productividad ☁️

Las técnicas de ingeniería generativa, si se hacen bien, pueden ayudarle a hacer las cosas bien, mejor y, lo que es más importante, más rápido.

Las técnicas de ingeniería generativa pueden ayudarle a hacer las cosas bien, mejor y, lo que es más importante, más rápido

The post Ingeniería de prompts para desarrolladores de Salesforce appeared first on Blog de desarrolladores de Salesforce.

Seguir leyendo

Todo lo que aprendimos sobre IA para ventas en Dreamforce 2023

Todo lo que aprendimos sobre IA para ventas en Dreamforce 2023

Dreamforce fue épico. Compartimos consejos y noticias de la industria con Salesblazers, hicimos amigos y repartimos montones de regalos (nuestros peluches son insuperables). Sin embargo, entre todas las sesiones de puesta al día y aprendizaje de este año, se destacó un tema: la importancia crítica de la inteligencia artificial (IA) en las ventas.

Los equipos de ventas están viendo el surgimiento de nuevas herramientas de inteligencia artificial para ayudar a la prospección, el entrenamiento y la previsión, todo al servicio de la eficiencia de las ventas. También hay un mayor interés en la información sobre los clientes en tiempo real como ventaja competitiva, alojada en un CRM único y seguro.

¿Cómo están aprovechando todo esto los mejores equipos de ventas, manteniendo al mismo tiempo relaciones sólidas con los clientes? Descubra sus consejos y trucos de ventas a continuación.

¿Te perdiste la conferencia magistral de Dreamforce Sales Cloud? Transmítalo en Salesforce+

Escuche lo que dicen los líderes de ventas innovadores sobre la innovación impulsada por la IA, la toma de decisiones basada en datos y las últimas innovaciones de Sales Cloud.

1. Priorice los datos seguros antes de adoptar la IA generativa

El campo en constante evolución de la IA promete mejorar la eficiencia de los vendedores, pero conlleva algunos desafíos de seguridad. Una investigación reciente de Salesforce encontró que el 73% de los empleados cree que la IA generativa introduce nuevos riesgos de seguridad. Hay buenos motivos para preocuparse: las herramientas públicas de IA generativa carecen de cifrado de datos, de enmascaramiento de datos y, en realidad, de cualquier tipo de protección de seguridad. Esto hace que sus datos sean vulnerables al robo y al mal uso.

En el último año, todos nos hemos vuelto un poco más inteligentes en lo que respecta a la seguridad. Ahora sabemos que debemos evitar conectar los datos de los clientes a herramientas públicas de IA generativa y que todavía necesitamos un ser humano en el medio para revisar manualmente cualquier copia de IA generativa para garantizar la precisión. Y si desea aprovechar la IA generativa, debe hacerlo en un entorno que pueda controlar, con todas las protecciones de seguridad que necesita para evitar que sus datos caigan en las manos equivocadas.

Cómo Salesforce le ayuda a mantener la seguridad:

La confianza siempre ha sido nuestro valor número uno, razón por la cual lanzamos Einstein Trust Layer a principios de este año. Se trata de una arquitectura de IA segura, integrada de forma nativa en la plataforma Salesforce. Diseñado para estándares de seguridad empresarial, permite a los equipos beneficiarse de la IA generativa sin comprometer los datos de sus clientes. Por ejemplo, si bien los mensajes impulsan cada salida de IA generativa, nuestra arquitectura Zero Retention garantiza que no se almacenen datos de clientes fuera de Salesforce. El enmascaramiento de datos (ocultar cualquier información confidencial de una empresa o un individuo) proporciona una capa adicional de protección.

2. No esperes para unirte a la IA generativa

La IA generativa puede parecer una adición espectacular a su pila tecnológica, pero no es simplemente algo "bueno tenerlo". Lo necesita para seguir siendo competitivo. Según nuestro reciente informe Tendencias en IA generativa para ventas , el 55% de los profesionales de ventas informan que actualmente o planean usar IA generativa, y el 58% dice que les ayuda o les ayudará a aumentar la productividad.

Es fácil ver por qué la adopción está aumentando. Los representantes pueden utilizar indicaciones basadas en texto para identificar clientes potenciales, investigar empresas, redactar correos electrónicos e incluso analizar correos electrónicos anteriores para descubrir necesidades de clientes potenciales que no han abordado. Los CRM más avanzados impulsados por IA pueden personalizar las comunicaciones e incluso imitar la voz y el tono de los representantes. Esto permite a los vendedores deshacerse de las tareas manuales que consumen mucho tiempo y centrarse en lo que realmente importa: construir relaciones significativas con los clientes .

Cómo ayuda Sales Cloud a que la IA sea accesible para todos:

En Dreamforce, presentamos algunas ingeniosas innovaciones de IA generativa para Sales Cloud ofrecidas a través de Einstein 1 Sales, nuestro conjunto de herramientas de IA:

Resumen de llamadas: resuma automáticamente las llamadas para resaltar los temas clave cubiertos durante las reuniones y los próximos pasos.

Correos electrónicos de ventas: genere automáticamente correos electrónicos personalizados e hiperrelevantes para cada conversación de ventas utilizando los datos del cliente que ya están alojados en Sales Cloud.

Einstein Copilot para ventas: descargue el trabajo pesado durante todo el ciclo de ventas a un asistente digital, incluida la investigación de cuentas, la preparación de reuniones (establecimiento de agenda y notas a tener en cuenta) y actualizaciones de registros de transacciones.

3. Apóyese en el análisis en tiempo real y la IA predictiva para ganar cuando llegue el cambio

Como selamentó recientemente uno de nuestros Salesblazers, muchas empresas todavía están atrapadas en hojas de cálculo obsoletas que requieren actualizaciones y análisis manuales lentos y que consumen mucho tiempo. Ése es el engorroso modus operandi operativo del pasado y dificulta actuar según la información más reciente sobre acuerdos. Peor aún: predecir lo que sucederá a continuación es una tarea hercúlea e imprecisa.

Al aprovechar el poder de la automatización, los equipos de ventas pueden apoyarse en su CRM para actualizar los registros de transacciones en tiempo real (léase: no más hojas de cálculo). Cuando se combina con IA predictiva, los representantes y gerentes pueden recibir alertas sobre posibles problemas de acuerdos y pronósticos antes de que las cosas se descarrilen.

Y eso es realmente sólo el comienzo. Imagínese esto: mientras los representantes se mantienen al tanto de las últimas novedades sobre los acuerdos, los gerentes aprovechan los datos en tiempo real para realizar un seguimiento del desempeño del equipo sobre la marcha, identificando oportunidades de capacitación en el momento (como clientes potenciales estancados) que pueden abordar rápidamente para mantener a los representantes encaminados. . Al mando, los líderes utilizan los datos más recientes para obtener una visión holística del desempeño de su organización de ventas en relación con los objetivos.

Los datos en tiempo real y la IA predictiva son las claves de todo esto, lo que permite a los equipos de ventas detectar señales de alerta tempranas y cambiar rápidamente las estrategias para garantizar que alcancen sus objetivos de ventas .

Cómo la IA predictiva y en tiempo real de Sales Cloud le ayuda a mantenerse por delante de sus competidores:

Al utilizarEinstein Activity Capture , Sales Cloud captura y unifica automáticamente datos de cada interacción con el cliente, como correos electrónicos, chats en línea y llamadas telefónicas, para que los representantes puedan ver su propio "estado de ventas" en cualquier momento. Aún mejor, los equipos pueden extraer datos de herramientas de terceros y armonizarlos con los registros de CRM existentes para obtener una vista de 360 grados de cada cliente y cliente potencial. Aplique la funcionalidad predictiva de IA y obtendrá recomendaciones muy relevantes para los próximos mejores pasos que harán avanzar cada acuerdo.

Para gerentes y líderes de ventas, las actualizaciones de datos en tiempo real y la IA predictiva se unen en El panel Deal Insights de Sales Cloud para detectar posibles problemas de pronóstico con anticipación para que los equipos puedan ajustar la estrategia y mantener el rumbo. La actividad de los representantes también se captura a través de Activity 360 : los gerentes pueden ver métricas clave del equipo, como clientes potenciales en proceso y tasa de ganancias, en un solo lugar para descubrir oportunidades de capacitación mientras todavía hay tiempo para impactar los acuerdos.

4. Invierta en una única plataforma en lugar de múltiples herramientas desconectadas

Nuestro reciente informe sobre el estado de las ventas reveló una cruda realidad: el 66% de los representantes de ventas se sienten abrumados por la multitud de herramientas disponibles. El atractivo de la tecnología de próxima generación, incluidos los complementos de IA generativa y las herramientas de función única, amenaza con agravar ese problema.

¿El grito de guerra del escenario de Dreamforce? Simplifique su pila tecnológica . Reemplace las soluciones puntuales con una plataforma que pueda ampliar con nuevas características, capacidades o funciones a medida que surjan las necesidades. Priorice las funciones principales, como la gestión de contactos, la gestión de canales y la previsión, pero también busque una plataforma que le permita integrar perfectamente capacidades de IA y análisis en tiempo real para eliminar la fatiga de alternar entre sistemas.

Cómo le ayuda Sales Cloud a impulsar las ventas de un extremo a otro:

Más allá de satisfacer las necesidades básicas del día a día de los vendedores a través de herramientas como Activity Capture, puede aprovechar la plataforma Sales Cloud para simplificar su pila tecnológica en ventas y operaciones, al tiempo que incorpora el poder de la IA. Por ejemplo, los equipos que supervisan la planificación de ventas y los programas de habilitación de ventas pueden utilizar el poder de los datos de actividad de clientes y vendedores en tiempo real para realizar esa planificación y seguimiento de resultados directamente dentro de Sales Cloud CRM. Muchos clientes de Sales Cloud incluso extienden las funciones de automatización e inteligencia de su CRM a los canales de socios a través de nuestra solución Partner Relationship Management .

5. La tecnología es importante, pero no pierdas el foco en las relaciones

Este último es un poco pivote.

Si hay algo que ha llamado la atención de los líderes de ventas en los últimos tiempos es esto: las relaciones te hacen o te deshacen. Es importante que estemos al tanto de las últimas tecnologías, como la IA, pero lo que es igualmente importante son las conexiones que establecemos con nuestros equipos y nuestros clientes. Eso siempre comienza con la superación personal. Cuanto mejor seas para involucrarte, comunicarte y animar a los demás, mejores serán tus relaciones.

Los Salesblazers hablaron mucho sobre esto durante Dreamforce, pero tres consejos fueron los que más resonaron. Primero, nunca dejes de aprender. Tome clases, obtenga experiencia práctica, haga crecer su red de pares y aprenda de otros en su campo. En segundo lugar, valore la confianza que se ha ganado con sus clientes y continúe fortaleciendo esas relaciones haciendo un seguimiento y ofreciéndoles recursos útiles que sabe que necesitan. En tercer lugar, muestra siempre lo mejor de ti. Tómese el tiempo para comprender qué es lo que realmente motiva a sus clientes y brinde las soluciones que necesitan antes de que sepan que las necesitan. Haga un esfuerzo adicional y descubrirá que la lealtad llega rápidamente.

Hay días difíciles y días fáciles, pero cada día es una oportunidad para apuntalar las relaciones que son la base de las ventas.

Cómo Salesforce puede ayudarle a fomentar relaciones sólidas:

La comunidad Salesblazer es el lugar al que acuden todos los profesionales de ventas para obtener asesoramiento profesional, orientación táctica de ventas y creación de redes. Únase y conéctese con compañeros Salesblazers que pueden ayudarlo a aprender, conectarse y crecer.

Prepárese para el éxito en las ventas

¿Qué aprendimos en Dreamforce? En resumen, la IA es el nombre del juego. A medida que evoluciona la industria de las ventas, los líderes de ventas pueden mejorar la productividad con IA generativa, tomar decisiones más rápidas basadas en datos con IA predictiva y optimizar la tecnología para que los representantes puedan centrarse más en la construcción de relaciones. Si los tiene en la mira, en 2024 estará por delante del resto.

Transmita lo mejor de Dreamforce 2023

¿Extrañas la magia? No te preocupes. Vea toda la cobertura de IA y vea qué están haciendo los principales líderes de ventas para salir adelante en 2023. ¡Todo está bajo demanda en Salesforce+!

Seguir leyendo

Introducción a los agentes autónomos ☁️

Introducción a los agentes autónomos ☁️

Esta es una traducción que desde EGA Futura ofrecemos como cortesía a toda la Ohana y comunidad de programadores , consultores , administradores y arquitectos de Salesforce para toda Iberoamérica .

El enlace a la publicación original, lo encontrarás al final de este artículo.

Introducción a los agentes autónomos | Blog de desarrolladores de Salesforce

El panorama de la IA está cambiando a un ritmo tan rápido que las tecnologías futuristas como la IA autónoma ya están mucho más cerca de lo que piensas. Esto se debe a la forma en que los grandes modelos de lenguaje (LLM) están comenzando a incorporarse en casi todas las formas en que interactúa con las aplicaciones. Para los desarrolladores, esto supone un cambio en la forma en que abordamos la creación de aplicaciones, desde las formas en que las reunimos hasta la creación con una UX conversacional completamente nueva.

En esta publicación de blog, veremos cómo los agentes autónomos incorporan la IA a la forma en que funcionan las aplicaciones y, al mismo tiempo, nos acercan a un mundo autónomo.

¿Qué son los agentes autónomos?

En nuestro panorama tecnológico, los agentes son sistemas avanzados que aprovechan el poder de los modelos lingüísticos para razonar y tomar decisiones. Lo que los diferencia de otro bot o marco es el hecho de que los agentes pueden realizar tareas en su nombre utilizando herramientas y memoria.

Las herramientas son extensiones de las capacidades de un modelo de lenguaje, que cierran brechas en su conocimiento y le permiten interactuar con fuentes de datos externas o recursos computacionales. Con estas herramientas, un modelo de lenguaje puede obtener datos en tiempo real, ejecutar tareas y utilizar los resultados para informar sus acciones posteriores. Por ejemplo, si un modelo de lenguaje conoce información solo hasta una fecha determinada, las herramientas pueden proporcionarle información más actualizada de la web, bases de datos u otras fuentes externas.

La memoria proporciona a los agentes la capacidad de recordar interacciones pasadas, lo que puede ser esencial para la continuidad de las tareas y el aprendizaje de acciones anteriores. Esta memoria puede ser de corta duración, centrándose en interacciones recientes, o de largo plazo, recordando eventos o patrones pasados importantes que son relevantes para situaciones actuales.

Juntos, estos elementos transforman un modelo de lenguaje en un agente que no sólo puede comprender y generar texto, sino también actuar sobre esa comprensión en contextos del mundo real. Dichos agentes pueden ejecutar soluciones de forma autónoma para los usuarios, pero también pueden integrar la intervención humana, especialmente en escenarios donde existen incertidumbres o excepciones.

¿Cómo funcionan los agentes?

Se han creado muchos marcos para respaldar el avance de los agentes, siendo algunos de los más populares AutoGPT y LangChain . Generalmente, los agentes siguen un patrón similar: el marco ReAct para razonar y actuar en modelos lingüísticos .

Este marco consta de una serie de pasos:

  1. El usuario proporciona información.
  2. El agente “piensa” en la respuesta adecuada
  3. El agente determina la acción, selecciona la herramienta relevante y decide la entrada para esa herramienta.
  4. La herramienta ofrece un resultado.
  5. El proceso recorre los pasos 2 a 4 hasta que el agente determina que la tarea está completa

Este proceso es el que empieza a hacer autónomo al agente. Al confiar en el LLM para pensar en la respuesta y determinar las acciones apropiadas necesarias, actúa por sí solo para crear el resultado deseado.

Usando LangChain como ejemplo, digamos que queremos crear una aplicación que permita a un cliente gestionar sus pedidos. Primero, podríamos darle a la aplicación acceso a nuestra base de datos de pedidos, base de datos de clientes y API de socios de envío. Luego, configuraríamos una serie de herramientas a las que puede acceder la aplicación para consultar datos, actualizarlos y utilizar IA generativa para redactar una respuesta.

Este agente de gestión de pedidos dispone de seis herramientas que puede utilizar “dentro de su dominio de conocimiento”:

  1. Query Orders es una herramienta que puede consultar pedidos desde una base de datos a través de una API conectada a una base de datos PostgreSQL.
  2. Update Order es una herramienta que puede actualizar un único pedido desde una base de datos a través de una API conectada a una base de datos PostgreSQL.
  3. Manage Tracking Info es una herramienta que puede gestionar un envío a través de una API proporcionada por una empresa de envío
  4. Get Customer es una herramienta que puede consultar datos de clientes desde una API conectada a un sistema CRM
  5. Update Customer es una herramienta que puede actualizar los datos de los clientes a través de una API conectada a un sistema CRM
  6. Compose Response es una herramienta que puede pasar indicaciones a un LLM y devolver una respuesta.

Veamos ahora cómo un agente podría manejar casos de uso relacionados con la gestión de pedidos. Por ejemplo, ¿cómo puede el agente ayudar a un usuario a obtener una actualización sobre el estado de su pedido?

  1. El usuario solicita la información más reciente de su pedido a través de un chatbot
  2. El agente “piensa” y determina la acción correcta que debe tomar
    1. El agente primero utiliza la herramienta Consultar cliente para consultar los detalles del cliente.
    2. Luego, el agente utiliza la herramienta Consultar pedidos para consultar pedidos desde una base de datos.
    3. Luego, el agente utiliza la herramienta Administrar información de seguimiento para obtener la información de envío más reciente de su socio de envío.
    4. Luego, el agente toma ambos resultados y utiliza la herramienta Redactar respuesta para generar una respuesta.
  3. La respuesta se devuelve al usuario.

En este escenario, el agente pudo tomar las herramientas que le proporcionamos y determinar el pedido y los parámetros que necesitan para crear el resultado correcto para el usuario, en este caso, toda su información de pedido y envío. Lo que es importante tener en cuenta aquí es que el usuario puede hacerle al agente cualquier pregunta sobre su pedido y el agente puede usar IA para razonar y usar las herramientas en el orden que necesite.

Como desarrollador, su función se centra más en crear las herramientas y permitir que el agente administre la orquestación.

Mantener a un humano informado

El desafío ético con los agentes autónomos es que no hay ningún ser humano involucrado cuando se trata de ejecutar las acciones. En Salesforce, estamos comprometidos con el uso ético de la IA y queremos dejarlo claro en nuestras implementaciones de este tipo de tecnología. Ciertas reglas exigen que una persona sea responsable de tomar la decisión final en asuntos con consecuencias legales o de impacto comparable, incluida la contratación laboral, la aprobación de préstamos, las admisiones educativas y las sugerencias en justicia penal. Esta insistencia en la supervisión humana, en lugar de decisiones automatizadas, tiene como objetivo identificar y reducir mejor los posibles sesgos y daños.

¿Qué significa esto para el futuro de Salesforce?

En Dreamforce este año, les dimos una idea de cómo será el futuro de Salesforce y la IA autónoma en la plataforma Einstein 1. Einstein Copilot es nuestra respuesta a un asistente conversacional de IA generativa basado en agentes que utiliza habilidades y acciones para guiar a los usuarios a través de la interacción con Salesforce. Esto introduce un paradigma de desarrollo completamente nuevo para Salesforce, uno en el que estamos creando piezas de funcionalidad más pequeñas que pueden ser orquestadas por Einstein Copilot.

¿Cómo se compara Einstein Copilot con un agente de IA?

Si bien existen varias similitudes entre Copilot y un marco de agente de código abierto, la verdadera diferencia es el acceso de Copilot a toda la plataforma de metadatos de Salesforce. No sólo eso, sino que el alcance es mucho mayor. En lugar de agentes individuales, tienes muchas habilidades , y en lugar de herramientas tienes acciones .

Por ejemplo, si desea actualizar un pedido utilizando Copilot, deberá crear una habilidad de gestión de pedidos. Con otros marcos, necesitarías crear un agente completo para la gestión de pedidos.

Cuando se trata de acciones, usted tiene el poder de la Plataforma Einstein 1 detrás de usted. Podrá utilizar Apex, Flow, las numerosas API de plataforma, SOQL y mucho más para brindarle a su habilidad la capacidad de reunir datos desde cualquier lugar. También tiene acceso directo a los datos de toda la plataforma.

Estudio Einstein Copiloto

Estas habilidades y acciones se reúnen en Einstein Copilot Studio , que le permite ensamblar flujos, indicaciones, Apex y más en colecciones de funcionalidades.

Actualmente existen tres herramientas dentro de Einstein Copilot Studio:

  • Prompt Builder le permite crear plantillas de mensajes utilizando campos de combinación de registros y datos proporcionados por Flow y Data Cloud.
  • Skills Builder le permite ensamblar acciones, como métodos invocables de Apex, flujos y llamadas de API de MuleSoft, y otorgárselas a un agente.
  • Model Builder le permite traer sus propios modelos de IA a Salesforce

Juntos, podrán crear agentes potentes en Salesforce que puedan usar su código para responder preguntas y ayudar a los usuarios.

La capa de confianza de Einstein

Una gran ventaja de Einstein Copilot es Einstein Trust Layer. Trust Layer proporciona un entorno seguro para el procesamiento de datos a través de un modelo de lenguaje grande, lo que garantiza que los datos del usuario permanezcan confidenciales al enmascarar información de identificación personal, verificar la salida en busca de contenido inapropiado y garantizar que no haya persistencia de datos fuera de Salesforce.

Trust Layer se ejecuta a través de un proceso de varios pasos para garantizar que los datos estén fundamentados y enmascarados antes de ser procesados por un proveedor de LLM externo, y proporciona una puerta de enlace segura para interactuar con dichos LLM. Una vez que se ha generado una respuesta, la verifica en busca de contenido tóxico y desenmascara los datos antes de presentárselos al usuario. Puede ver más de cerca la capa de confianza en nuestra publicación de blog Dentro de la capa de confianza de Einstein .

Resumen

La IA autónoma se hace realidad mucho más cerca a través de agentes, lo que marca el comienzo de una nueva era de tecnología en la que el razonamiento y la toma de decisiones se potencian con herramientas y memoria. Einstein Copilot de Salesforce introduce este enfoque impulsado por agentes en la plataforma, ofreciendo un asistente de IA conversacional que guía a los usuarios, aprovecha los vastos metadatos de Salesforce y garantiza la integridad de los datos a través de Einstein Trust Layer. Este cambio transformador significa no sólo una evolución en las interacciones de IA, sino también una promesa de experiencias seguras, eficientes y fluidas para los usuarios de Salesforce.

Sobre el Autor

Stephan Chandler-García es el director de contenido estratégico de Salesforce. Ha estado en el ecosistema de Salesforce durante más de 10 años como cliente, socio e ISV. Puede encontrar a Stephan en persona en un grupo comunitario Trailblazer o en una de nuestras conferencias en todo el mundo. Alternativamente, sígalo en X (Twitter) o GitHub .

Obtenga las últimas publicaciones de blog y episodios de podcasts para desarrolladores de Salesforce a través de Slack o RSS.

Añadir a holgura Suscríbete a RSS

Seguir leyendo